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are real and positive, but may be fractional

or integral.

While tables of the zeros of (1) do exist

for certain ranges of p and k (see [1], [2],

[3]) these are in general rather limited in

extent, particularly for large and fractional

values of @ and k. Hence, for the solution of

problems involving non-tabulated values of
the parameters it is necessary either to inter-
polate existing tabulations, or to solve (1)
numerically. In many such instances much
of the labor may be avoided by the use of a

simple relation, derived by the author in the
course of developing an approximate theory

of propagation in rectangular waveguide

wound into a helical form [for the exact

treatment of this problem see [4], which

also contains extensive tables of the zeros of

(1 )]. On the basis of the assumptions

a) that only the TE1O mode is propa-

gated,
b) that electrical lengths may be meas-

ured along the axis of the waveguide,
and

c) that the pitch of the helix is negligible
(see [-t ] for justification of this),

the following formula for the roots of ( 1) is

derived:

The values XOobtained from (2) are very
close approximations to the first zeros of ( 1).
The closeness of the approximation depends

upon the particular values of k and @ under
consideration, and for a given case may be
estimated by reference to the accompanying
Fig. 1. If the point determined by (k, p) lies
within the central cross-hatched region, the

resultant value of XOwill in general be within
~ 1 per cent of the exact value, though if it

lies within the region bounded by the dashed

curve the lower limit may drop to — 1.5 per

cent. If the point lies anywhere within the
diagonally-hatched region the value of w

calculated from (2) will be within ~ 5 per
cent of the exact \,alue.

For the design engineer, accuracies with-
in i- 1 per cent will often be adequate, and
in such cases the use of (2) obviates the
need for interpolation of tables or other
tedious calculation. In other cases, where
high accuracy is required, the use of (2) will

quicly provide an excellent “first guess”
which will permit a rapidly cou~,ergent nu-

merical solution of ( 1). It may further be

noted that, given any two of the three

parameters j, k, XO, the third may readily
be calculated from (2) and the accuracy of
the result determined from Fig. 1.
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Maximum Efficiency of a Two

Arm Waveguide Junction*

It is well-lmown that the efficiency- of a
two-arm waveguide junction (2-port) de-
pends upon the reflection coefficient rL of
the load with which one of the arms is
terminated. The efficiency is known to vary
between the limits O and v,. (maximum ef-
ficiency) as rL assumes all possible \-alues
with in the unit circle. However, there seems
to be no published analysis from which one

* Rece,ved October 11, 1962.
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can determine the particular rL giving maxi-

mum efficiency if the characteristics of the

waveguide junction are known.

It can be shownl that the reflection co-
efficient r~ to give maximum efficiency can

be calculated from

F.i.f = S2Z*

(1 –S,,r,w)*s,J12*s2, + Is,,s,l l’r~
+ —. —– , (1)

(1 – Is,] I‘) 0 –s,,r~r) –s11*s1,s21rJf

where the asterisk * denotes the complex
conjugate, the S-terms denote the scattering

coefficients of the waveguide junction, and

the load of reflection coefficient r~ ter-
minates arm 2. The solution of ( 1) for r~
may be written

r..=;[l * /’- (a;!)’].
Where

A = S22 + S11*(S12S21 – S1l.S22), (2)

and

B = 1 – IS1112+ [s22/2– I S12S21-S11S2212

in some cases, it is necessary to choose the

algebraic sign in (2) to yield a \,alue of r~l
within the unit circle.

One r~ has been determined, the maxi-
mum efficiency qM can be determined from
the equation

Z“l
‘“ = Z ls,,lz(l- I ml’) , (3)

.—-— ——————___

I 1–sz,rjl I‘– j Lslzszl–s,,szz) rk +s,l ]’

where ZOI and ZOZ are the characteristic im-

pedances of arms 1 and 2, respectively, of the
2-arm waveguide junction.

It can be further shown2 that the quan-

tity AI, the intrinsic attenuation (equiva-
lent to the intrinsic insertion loss of Tomi-

yasu3) is given by-

AZ = 1010g104 .
?’U

(4)
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x A convenient way to show this, is to postulate
lossless tuners attached to both arms of the wave.
guide junction and adjusted for maximum power to
the load. Under this condition, a conjugate match is
obtained at each terminal surface in each waveguide
lead. For simplicity, one may assume a non-reflecting
generator and load without significant loss in gener.
ality. A straightforward analysis then leads to the
stated result.

3 This is shown in a paper entitled “Intrinsic At.
tenuation” which is in preparation by the correspond.
ellt.

2 Kiyo Tomiyasu, “Intrinsic Insertion Loss of a
Mismatched Mmmwave h,etwork, n IRE TRAPJS. ON
MICROWAVE THEORY AND TECHNIQUES, vol. MTT.3,
pp 40–44; January 1955.


